FIELD GUIDE TO THE SEDGES OF OREGON AND WASHINGTON

by Barbara L. Wilson, Richard E. Brainerd, Danna Lytjen, Bruce Newhouse, and Nick Otting

of the Carex Working Group

When preparing the second edition of the Field Guide to the Sedges of Oregon and Washington, we had to remove the Carex Ethnobotany section to make room for the additional Carex species that had been found in the PNW since publication of the first edition. This text is provided here.

Carex Ethnobotany

Carex have been valued primarily as fiber plants and as forage for livestock. A few species have been used medicinally. Carex have been of minor importance as a food source for humans. At present, several species are being sold as ornamentals.

Ethnobotanical reports of Carex usage by native people often fail to identify the species used. In many cases, the lack of specificity is appropriate because people applied a single name to all species of similar growth form or use. In some cases, the specific identification provided by ethnobotanists should be read with skepticism.

Sedges have been valued mostly as fiber plants. By in large, sedges are tougher and more flexible than grasses. Leaves have been used to make rope, and leaves and rhizomes are split to make baskets, mats, and clothing. Processing rhizomes for weaving is a complex task. Rhizomes are carefully dug out undamaged. To prevent brittleness, they are kept wet until peeled. The outer layers are removed, leaving a pale core. That core is split, often into very narrow fibers. The fibers are coiled for storage or trade, and moistened before use.

The long, unbranched rhizomes preferred for weaving were produced by cultivating sedge beds in sandy soils with little competing vegetation. Harvester thinned the plants and removed senescent leaves. Stones and other obstructions were removed and competing plants were thinned. Individuals or families owned the sedge beds, an incentive for using sustainable harvest practices. Traditionally, harvest was limited by season and a given bed might be harvested every two or three years. New sedge beds were planted when the opportunity arose. Selection and transport by Native Americans may have affected the diversity and distribution of favored plants, particularly Carex barbara.

Leaves and rhizomes have been put to diverse uses. Bundles of sedges have been used as torches. Sedges have been used as packing for fragile items and to line cooking pits. Sedge leaves were softened by rubbing and used as insoles or insulation for footwear. Roots of one species have been used to produce dye. It is reported that the sharp edges of Carex obnupta have been used by men for shaving. Carex Working Group members are not sure how, or if, that was accomplished. One of the few reports of ritual use that was identified to species involved Carex nebrascensis, considered to be the American bison’s favorite food.

Sedges seem so nearly lacking in secondary compounds that it is a surprise to learn than some have been used medicinally. Various species have been used as stimulants or to cause vomiting, soothe the digestive system, cause abortion, expel the placenta after birth, or treat certain conditions that are difficult to translate into modern medical usage. Their effectiveness for these purposes is unconfirmed.

Sedges have received little use as human foods. The achenes have some nutrient value, and those of some species have been ground, cooked into a mush, and eaten. However, yields are low and the achenes are small and nested inside the usually indigestible perigynium. Achenes of Carex raynoldsii and Carex geyeri are larger and less tough than those of most Carex, providing a decent trailside nibble. The orange, succulent, and sometimes vaguely sweet perigynia of Carex aurea make another interesting snack. None of these species is common enough or has a high enough yield to be taken seriously as a food source.

Carex leaves and rhizomes are high in fiber and low in starch and nitrogen, thus largely indigestible by humans. Bases of the leaves and shoots are relatively succulent and are sometimes eaten, generally raw, in the field. The pith juice has been used as a beverage. Sedges store starch in their rhizomes. Although they are extremely fibrous, rhizomes of the larger species have occasionally been eaten, usually as a last resort to stave off starvation.

Recently, several species of Carex have entered the horticultural trade. These include native Carex pansa, Carex praecox, Carex praegracilis, and Carex tumulicola, used for lawns because they require less water than traditional lawn grasses, are more resistant to trampling, and require less mowing. Species used as ornamentals include PNW natives Carex bebbii,
C. heteroneura, C. hystericina, and C. nudata, and a variegated form of C. pallescens. Introduced C. buchananii, C. pendula, and C. sylvatica are spreading from gardens and establishing in natural habitats in the PNW.

In this list of species, the people who used the plant in the way listed are in parentheses.

C. amplifolia: rhizomes used in basketry (Native Americans in California)
C. aperta: hay (Euro-Americans, Portland, OR)
C. aquatilis: stem bases eaten raw (Alaskans)
C. aquatilis var. dives: leaves used to make baskets and strong handles for bags (Hesquiat, Makah)
C. arenaria: Seeds and starchy rhizomes (which have greatest starch content in fall) edible by humans, but yields are low. Decoction made from the rhizomes was considered diaphoretic and diuretic, a substitute for sarsaparilla, and used to treat diverse ailments such as syphilis, rheumatism, gout, lung and skin diseases (Europeans)
C. atherodes: hay, animal feed (Nlaka’pamux, Euro-Americans); leaves softened by rubbing and used as insoles for moccasins (Nlaka’pamux)
C. aurea: perigynia edible when ripe, faintly sweet (Carex Working Group)
C. barbara: leaves and more importantly the rhizomes to make baskets (Kashaya, Maidu, Pomo, and all other peoples within its range)
C. brevior: compound infusion of the plant taken to aid evacuation of the placenta (Iroquois)
C. buxbaumii: rhizomes used in basketry (Native Americans in California)
C. concinnoides: lining for cooking pits, other household uses (Okanogan-Colville)
C. densa: cut for hay and fed to livestock (Mendocino Indians)
C. douglasii: raw stems eaten (Kawaiisu)
C. geyeri: perigynia edible (Carex Working Group)
C. hassei: rhizomes used in basketry (Native Americans in California)
C. kobomugi: packing for porcelain; starchy achenes eaten; used in traditional medicine (Chinese)
C. lyngbyei: fodder, hay, silage (Icelanders); rhizomes used in basketry (Native Americans in California); leaves used for weaving (Aleuts, Haida, Squamish, Schelt)
C. macrocephala: tincture of achenes used as a stimulant (in Russian Far East)
C. mendocinensis: rhizomes used in basketry (Pomo)
C. microptera: plant used as a ceremonial emetic (Navajo, Ramah)
C. nebrascensis: plant used in Sun Dance and Massaum ceremonies, sometimes tied to horns of bison head or skull (Blackfeet, Cheyenne); rhizomes used in basketry (Native Americans in California)
C. obnupta: leaves split and used to make baskets (Hesquiat, Kitinaht, Makah, Nootka, Coast Salish); rhizomes used in basketry but not preferred because of small protuberances along the rhizome (Native Americans in California); foliage softened by rubbing and used as insoles for moccasins (Nlaka’pamux); sharp-edged leaves used by men for shaving (Hesquiat); stems used for food (Salmon River people of the Tillamook); used for animal feed (Nlaka’pamux)
C. pellita: rhizomes split and cured for use as the pale buff weft or sewing stitch threads (Pomo)
C. praegracilis: hay, on alkaline ranges (Euro-Americans).
C. raynoldsii: perigynia edible (Carex Working Group)
C. rostrata: “bulbs” used for food (Nlaka’pamux); used for animal feed, including hay and silage (Nlaka’pamux, Icelanders);
C. saxatilis: forage, hay, silage (Icelanders)
C. simulata: rhizomes used in basketry (Native Americans in California)
C. utriculata: tender lower parts of stems eaten by children (Gosiute); rhizomes used in basketry (Native Americans in California)
C. vescaria: plants used as rough ropes for handling newly cast pipes (Euro-Americans in Portland, OR); roots used to make a black dye for basketry (Shoshoni); rhizomes used for basketry (Native Americans)
C. vulpinoides: compound decoction of roots used as a “rooster fighting medicine” (Iroquois)
C. sp., unidentified: leaves eaten to induce abortions (Songish); pith juice used as beverage; tuberous base of stem used for food; fresh stems eaten (Klamath); roots used as medicine (Gosiute); leaves made into cleaning brushes (Nlaka’pamux); dried plants tied in tight bundles and used as torches (Pomo); leaves and/or rhizomes used to make baskets, hats, mats, and rope (Costanoan Indians, Klamath, Mendocino Indians, Montana Indians, Pomo, Salish, Wailaki, Yuki).
Carex Ethnobotany References

Bank, T. P. 1951 Botanical and ethnobotanical studies in the Aleutian Islands. in: Aleutian Vegetation
Barrett, S. A. 1908 Pomo Indian Basketry University of California Publications in American Archaeology
and Ethnology 7: 134-308. yes Carex barbarae BLW
Baumhoff, M. A., and R. I. Orlins. 1979 An Archaeological Assay on Dry Creek, Sonoma County,
California. Contributions of the University of California Archaeological Research Facility, No. 40.
University of California Department of Anthropology. no Carex pellita
of the Warm Springs Dam and Lake Sonoma Project, Sonoma County, California. Washington,
D.C.: U.S. Army Corps of Engineers. no Carex barbarae
Experimental Station Bullein 56 (p. 9) yes Carex sp. done
Bocek, B. R. 1984 Ethnobotany of Costanoan Indians, California, based on collections by John P.
Harrington. Economic Botany 38: 240-255 (p. 255) yes Carex sp. done
Chamberlin, R. V. 1911 The Ethnobotany of the Gosiute Indians of Utah. Memoirs fo the American
Anthropological Association 2: 331-405 (p. 365) yes C. utriculata done
Chetnut, V. K. 1902 Plants used by the Indians of Mendocino County, California. Contr. U.S. Nat. Herb. 7:
295-408 (p. 314-215) yes Carex densa, Carex barbarae done
Coville, F. V. 1897 Notes on the plants used by the Klamath Indians of Oregon Contr. U.S. Nat. Herb. 5:
87-110 (p. 92) yes Carex sp. done
Curtin, L. S. M. 1957 Some plants used by the Yuki Indians . . . II. Food Plants. The Masterkey 31: 85-94
(p. 93) yes Carex sp. done
Oregon 169 pp. BLW
Erichsen-Brown, C. 1989 Medicinal and Other Uses of North American Plants: A Historical Survey with
Special Reference to Eastern Indian Tribes. Dover, New York, New York
Farr, D. F., G. F. Bills, G. P. Chamuris, and A. Y Rossman 1989 Fungi on plants and plant products in the
Giese, Paula 1996 Lake Sonoma Dam Drowns Basket Plants http://www.kstrom.net
isk/art/basket/
warmdam.html. Accessed November 1 2004. yes Carex pellita BLW
(p. 11-12) yes Carex sp. done
Gill, S. J. 1983 Ethnobotany of the Makah and Ozette People, Olympic Peninsula, Washington (USA)
Washington State University, Ph.D. Thesis (p. 330) yes Carex obnupta done
Goodrich, J. and C. Lawson 1980 Kashaya Pomo Plants. Los Angeles American Indian Studies Center,
University of California, Los Angeles (p. 103) yes Carex barbarae done
8: 13-33
Gottsfeld, L. M. J. and B. Anderson 1991 Plants That We Use: Tribal Plant Uses of the
Wet'suwet'en People. Kyah Wiget Education Society, Moricetown, British Columbia.
(p. 22) yes Carex aquatilis var. dives done
Hart, J. A. 1981 The ethnobotany of the Northern Cheyenne Indians of Montana J. Ethnopharmacology 4:
1-55 (p. 7) yes Carex nebrascensis done
Hebdia, J., and K. W. Mathewes 1984 Holocene history of cedar and native Indian cultures of the
North American Pacific Coast. Science 225: 711-713
Heller, C. A. 1953 Edible and Poisonous Plants of Alaska University of Alaska (p. 129) yes Carex
aquatilis done


McClintock, W. 1909 Medizinal- Und Nutzpflanzen Der Schwarzfuss Indianer Zeitschrift fur Ethnologie 44: 273-279 (p. 277) yes Carex nebrascensis done


Moric, Father A. G. 1892-1893 Notes Archaeological, Industrial, and Sociological on the Western Denes with an Ethnographical Sketch of the Same Transactions of the Candian Institute, Session 1892-1893

Murphey, Edith Van Allen 1990 Indian Uses of Native Plants Glenwood, Illinois. Meyerbooks. Originally published in 1959 (p. 6-8) yes Carex exsiccata, Carex mendocinensis done

Murphy, E. V. 1959 Indian Uses of Native Plants Mendocino County Historical Society, Fort Bragg, California


Palmer, G. 1975 Shuswap Ethnobotany Syesys 9(2)


Steedman, E. V. 1928 The Ethnobotany of the Thompson Indians of British Columbia SI-BAE Annual Report # 45: 441-522 (p. 514) yes Carex rostrata, Carex sp. done


Sweet, M. 1962 Common Edible and Useful Plants of the West Naruregraph Company, Healdsburg, California


Turner, N. C. and M. A. M. Bell. 1971 The ethnobotany of the Coast Salish Indians of Vancouver Island, I and II. Economic Botany 25: 63-104, 335-339 (p. 73) yes Carex sp. done


Turner, N. J. 1992 Just when the wild roses bloom*: The legacy of a Lillooet basket weaver. TEK TALK: A Newsletter of Traditional Ecological Knowledge 1: 2-5


